Gas Laws: Combined Gas Law

Video Workbook with Dr. B.

If we combine Boyle's, Charles, and Gay-Lussac's laws we get the Combined Gas Law.

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

You use the Combined Gas Law when you have initial and final conditions.

While Celsius often works with the Combined Gas Law, it is recommended to always work in Kelvin.

When a question says "held constant" it means we can ignore the variable (it didn't change).

Example 1

A gas occupies 2.3 liters at a pressure of 1.3 atm . What is the volume when the pressure is increased to 4.7 atm ? The temperature remains constant.

- Video of worked solution.

Example 1 Solution

Here we can ignore temperature since it does not change (stays constant). That means we use $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$.

$$
(1.3 \mathrm{~atm})(2.3 \mathrm{~L})=(4.7 \mathrm{~atm}) \mathrm{V}_{2}
$$

Solving for V_{2}, the new volume will be 0.64 L .

Example 2

3.22 L of a gas is collected at $23.0^{\circ} \mathrm{C}$. What will be its volume after it cools to $15.0^{\circ} \mathrm{C}$ if pressure remains constant?

- Video of worked solution.

Example 2 Solution

We can ignore P as the pressure remains constant. We use:

$$
\mathrm{V}_{1} / \mathrm{T}_{1}=\mathrm{V}_{2} / \mathrm{T}_{2}
$$

$3.22 \mathrm{~L} / 296.15 \mathrm{~K}=\mathrm{V}_{2} / 288.15 \mathrm{~K}$
Solving for V_{2} the new volume is 3.13 L .
Note, you would get the same answer using ${ }^{\circ} \mathrm{C}$ but this doesn't always work.

Example 3

For a gas in a closed container the pressure is increased from 11.0 atmospheres to 12.2 atmospheres. If the original temperature was $25.0^{\circ} \mathrm{C}$, what is the final temperature of the gas?

- Video of worked solution.

Example 3 Solution

Since volume is not stated in the problem we assume it is held constant and we can ignore it.

$$
\mathrm{P}_{1} / \mathrm{T}_{1}=\mathrm{P}_{2} / \mathrm{T}_{2}
$$

$(11.0 \mathrm{~atm})(298.15 \mathrm{~K})=(27.0 \mathrm{~atm}) / \mathrm{T}_{2}$
Solving for T_{2} we get 330 K .

Example 4

A gas initially at $2.00 \mathrm{~atm}, 1.20 \mathrm{~L}$, and 273 K has its pressure reduced to 0.90 atm , and the volume is increased to 3.1 L. Determine the final temperature.

- Video of worked solution.

Example 4 Solution

In this problem we have P, V, and T so we use:
$\mathrm{P}_{1} \mathrm{~V}_{1} / \mathrm{T}_{1}=\mathrm{P}_{2} \mathrm{~T}_{2} / \mathrm{V}_{2}$

$$
\frac{(2.0 \mathrm{~atm})(1.2 \mathrm{~L})}{273 \mathrm{~K}}=\frac{(0.9 \mathrm{~atm})(3.1 \mathrm{~L})}{\mathrm{T}_{2}}
$$

Solving for T_{2} we get 317 K .

Example 5

A balloon has a volume of 3.5 L at STP . What will the new volume be if the balloon is taken outside on a day where the new temperature is $-17.15^{\circ} \mathrm{C}$? Assume the pressure inside and outside is the same (1.0 atm).

- Video of worked solution.

Example 5 Solution

The key to this problem is recognizing that STP is Standard Temperature and Pressure (1 atm and 273.15 K).

$$
\frac{(1.0 \mathrm{~atm})(3.5 \mathrm{~L})}{273.15 \mathrm{~K}}=\frac{(1.0 \mathrm{~atm})(\mathrm{V} 2)}{255.95 \mathrm{~K}}
$$

Solving for V_{2} we get 3.3 L .

Example 6

A sample of 2.0 moles of gas has a pressure of 1.33 atm , a volume of 5.24 L , and temperature of $35.5^{\circ} \mathrm{C}$. If you cool it to a final temperature of $10.0^{\circ} \mathrm{C}$, decrease the volume to 2.32 L , and add an additional 3.0 moles of gas (for a final of 5.0 moles), what will the pressure be?

$$
\frac{P_{1} \cdot V_{1}}{T_{1} \cdot n_{1}}=\frac{P_{2} \cdot V_{2}}{T_{2} \cdot n_{2}}
$$

We can extend the Combined Gas Law to include moles (n).

$$
\begin{gathered}
\frac{P_{1} \cdot V_{1}}{T_{1} \cdot n_{1}}=\frac{P_{2} \cdot V_{2}}{T_{2} \cdot n_{2}} \\
\frac{(1.33 \mathrm{~atm})(5.24 \mathrm{~L})}{(308.65 \mathrm{~K})(2.0 \mathrm{~mol})}=\frac{\mathrm{P}_{2}(2.32 \mathrm{~L})}{(283.15 \mathrm{~K})(5.0 \mathrm{~mol})}
\end{gathered}
$$

Note, for T_{2} we add the initial moles (2.0) and the amount we added (3.0) to get the final number of moles (5.0 moles).

Solving for P_{2} we get 6.8 atm.

Example 7 Solution

A sample of gas has a volume of 15.0 L at a pressure of 1.0 atm and a temperature of 27.2 degrees Celsius. What is the new volume if the pressure is raised to 1580 mmHg and the temperature is raised to 356.2 K degrees Celsius?

$$
\text { Note: } 1 \mathrm{~atm}=760 \mathrm{mmHg}
$$

Example 7 Solution

The challenge here is that the units for the initial and final don't match for pressure or temperature.

Divide 1580 mmHg by $760 \mathrm{mmHg} /$ atm to get P in atm.

$$
\frac{(1.0 \mathrm{~atm})(15.0 \mathrm{~L})}{300.35 \mathrm{~K}}=\frac{(2.08 \mathrm{~atm})\left(\mathrm{V}_{2}\right)}{356.2 \mathrm{~K}}
$$

Guides

KMT and the Gas Laws

Combined Gas Law (this guide)

Ideal Gas Law

Report errors and suggestions to $\underline{\text { DrB@ } @ \text { breslyn.org }}$

www.Breslyn.org

