

Properties of Ionic & Molecular Bonds

More guides at www.breslyn.org

Video Workbook with Dr. B

Metal + Non-Metal = Ionic

We use ionic charge with ionic compounds!

Non-Metal + Non-Metal = Molecular

We **do not** use ionic charge with molecular compounds!

H Hydropen																	2 He
3 Li	4 Be	Metals Metalloids Non-Metals								5 B	6 C Carton	7 N Nitropon	8 O Orygen	9 F	10 Ne Nace		
11 Na Sedium	12 Mg Magnesian	Transition Metals									13 A1 Abecouse	14 Si street	15 P Phophrus	16 S Satte	17 Cl Chlorine	18 Ar	
19 K Potenium	20 Ca Calcium	21 Sc Scardian	22 Ti	23 V Vanadium	24 Cr	25 Mn Manganese	26 Fe	27 Co	28 Ni Nicket	29 Cu	30 Zn ^{Znc}	31 Ga	32 Ge	As As	34 Se Seleman	35 Br	36 Kr _{Кеурыя}
37 Rb Rahdun	38 Sr Stootion	39 Y Yitman	40 Zr	41 Nb Nistrian	42 Mo Molyhdosuti	43 Te Technelium	44 Ru Ratherium	45 Rh Rhodram	46 Pd Palladium	47 Ag	48 Cd Cadmium	49 In	50 Sn	51 Sb	52 Te	53 I Indisc	54 Xe Xee
55 Cs Cotum	56 Ba	57 La	72 Hf	73 Ta Tuntalum	74 W Tutphre	75 Re	76 Os Cumium	77 Ir	78 Pt Platinum	79 Au	80 Hg	81 Tl Thallun	82 Pb	83 Bi	84 Po Polonium	85 At Adabay	86 Rn Into
87 Fr Francium	88 Ra Radium	Ac Ac	104 Rf Eatherfeedium	105 Db Dubnium	106 Sg Sephergram	107 Bh	108 Hs	109 Mt Meinstrium	110	111	112	113	114				

The atoms in Ionic compounds **transfer** electrons.

The atoms in Molecular (also called Covalent) compounds **share** electrons.

This results in them having different properties (in general).

Key Terms

A **chemical bond** forms when valence electrons are transferred (ionic) or shared (molecular) between atoms.

Bonds are formed to fill their highest energy level (often called an **Octet**). Noble gases have octets.

Ionic Bond—a strong bond between a metal cation (positive ions) and non-metal anion (negative ions)

Ion—atoms that have a charge (+ or -).

Lost electron = + charge = cation.

Gained electron = - charge = anion.

Molecular (Covalent) Bond—a semi-strong bond between two non-metals.

For example:

Which compound would share electrons: CaCl₂ or SO₂?

Which compound would be ionic: NaCl or CuCl₂?

Which would have a stronger bond: MgO or CH₄?

Answers: SO2 is molecular so it would share electrons. Both NaCl and CuCl2 are ionic compounds. MgO is ionic so it would have a strong bond.

Properties of Ionic and Molecular Compounds

Property	Ionic Bonds	Covalent Bonds				
State	crystalline solids	solids, liquids, gases				
Melt/Boiling Point	High	Low				
Solubility	Usually dissolves in water but not in non-polar liquids	Usually soluble in non-polar liquids but not in water				
Conductivity	Conducts electricity when melted or dissolved in water.	Does not conduct electricity.				
Hardness	Hard and brittle	For covalent solids - usually soft				

Quiz (answers provided at end of quiz, you can retake this quiz multiple times).

Report errors and suggestions to DrB@breslyn.org

