

Molecular, Structural & Skeletal Formulas

with Dr. B

More guides at www.breslyn.org

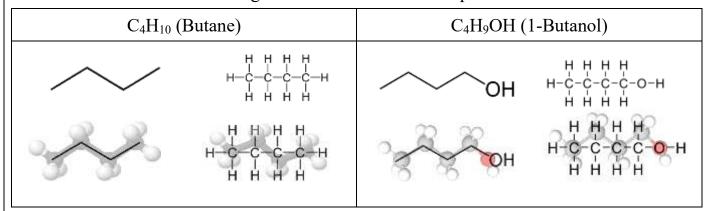
Please leave feedback on this draft orgo guide!

Feedback Form

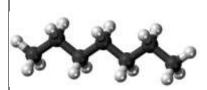
Sign up to get updates when new guides are available.

Table of Contents and Key Skills

- Carbon makes four bonds!
- Writing Molecular, Structural, and Skeletal Formulas
- Visualizing molecules in 3-D.

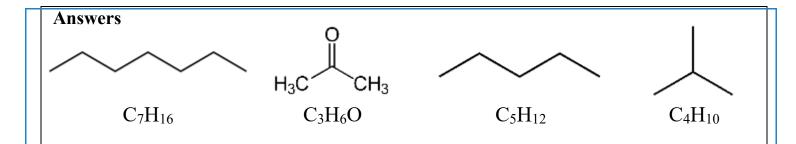

- Writing Molecular, Structural, & Skeletal Formulas for:
 - Double and triple bonds
 - Cyclic compounds.
 - Compounds with Oxygen, Nitrogen, and Sulfur.
- Practice

Make sure you fully understand that Carbon makes four (4) bonds!



Single lines are one bond. Double lines repsent two bonds. Triple lines represent three bonds.

Visualizing Molecules in Different Representations



Practice: Draw the skeletal structures for each of the following molecular models and write the molecular formulas (e.g. C₂H₆).

Definitions (<u>Watch video on differences</u>.)

Molecular Formula	Shows the exact number of atoms of each element in a molecule.	C ₂ H ₄	(CH ₃) ₂ CO	C ₅ H ₁₂
Structural Formula	Shows how atoms are bonded together in a molecule.	H C H	H ₃ C CH ₃	H H H H H-C-C-C-C-C-H H H H H H
Skeletal Formula	A simplified version of a structural formula. H atoms bonded to C atoms are not shown.	II		^

Review the examples below, then answer the practice questions at the end of this document.

Examples

How do the different representations show the same molecule? What are the advantages and disadvantages of each representation?

Molecular Formula	Structural Formula	Skeletal (Bond-Line)
C ₆ H ₁₄ 2-Methylpentane	H-C-H H H H H H-C-C-C-C-C-H H H H H H	
C ₃ H ₆ O 2-Propanone (or just Propanone)	H O H H U U U U U U U U U U U U U U U U U U	

Note: For 2-Propanone we don't show the lone pairs on the Oxygen atom (there are two pairs). We'll learn that later!

Examples of Double and Triple Bonds

Molecular Formula	Structural Formula	Skeletal (Bond-Line)
C ₃ H ₆ Propene	H-C-C-CH	
C ₅ H ₈ 2-Pentyne	$H - \stackrel{H}{c} - c = c - \stackrel{H}{c} - \stackrel{H}{c} - H$	

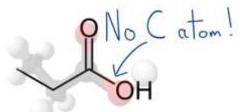
The number of hydrogen atoms decreases when double or triple bonds are introduced.

Remember, Carbon has four bonds.

Note that the shape of the molecule with double and triple bonds is different!

Examples of Cyclic Molecules (including Benzene)

Molecular Formula	Structural Formula	Skeletal (Bond-Line)
C ₅ H ₁₀	$H \longrightarrow \begin{bmatrix} H & H \\ C & -C \end{bmatrix} \longrightarrow H$	
Cyclopentane	н—с, с—н	
	н С н	
C_6H_6	H_C_C_C_H	
Benzene	H_C_C_C_H	
	H	2


	Molecular Formula	Structural Formula	Skeletal (Bond-Line)
Pros	Concise, shows number and types of atoms.	Shows arrangement of atoms.	Provides most info in the least amount of space.
Cons	Doesn't account for isomers or 3-D structure.	Bulky, doesn't show much about 3-D structure.	Requires interpretation to visualize C and H atoms.

Examples with Oxygen, Nitrogen, & Sulfur

Molecular Formula	Structural Formula	Skeletal (Bond-Line)
CH ₃ CH ₂ CO ₂ H Propanoic acid	H H O H	ОН
(CH ₃) ₂ NH Dimethylamine	H ₁ N _C CH ₃	H

Important: we show H when connected to O, N, or S.

And careful with lines that end in O, N, or S! The line doesn't end in C.

Practice

Fill in the missing Molecular, Structural, or Skeletal formula.

Set 1

Propane		
3-Ethylhexane	H H H H H H H H H H H H H H H H H H H	
2-2-Dimethylpentane		

Set 2 Propyne CH₃ 2-Butene (trans-2-Butene) H_3C Set 3 Cyclobutane Methylbenzene ÇH₃ (Toluene) $C_6H_5CH_3$ Set 4 Propanol Triethylamine $N(CH_2CH_3)_3$

Answer Key

Set 1

Propane C ₃ H ₈	H H H H-C-C-C-H H H H	
$_{\mathrm{C_8H_{18}}}$	H H H C-H H H H H H H H H H H H H H H H	
2-2-Dimethylpentane C ₇ H ₁₆	H 11-C-H H H H H-C-C-C-C-C-H H 11-C-H H H H	

Set 2

Propyne C ₃ H ₄	H—C≡C—C—H H	· ••
2-Butene (trans-2-Butene) C ₄ H ₈	H ₃ C H	

Set 3

Cyclobutane C ₄ H ₈	H H H H H H H H H H H H H H H H H H H	
Methylbenzene (Toluene)	H - C - H	CH₃
C ₆ H ₅ CH ₃	H C C H	

Set 4

Propanol C ₃ H ₅ OH	H H H H-C-C-C-O-H H H H	OH
Triethylamine N(CH ₂ CH ₃) ₃	H—C—H H—C—H H—C—H	

Report errors and suggestions to DrB@breslyn.org

www.Breslyn.org

Future Related Guides

Get updates on future guides.

Drawing in Lone Pairs

Functional Groups

Alkanes

Alkenes

Alkynes

Alcohols

Aldehydes

Ketones

Carboxylic Acids

Esters

Ethers

Ring Structures

Amides and Amines