

Redox in Basic Medium/Solution

Video Workbook with Dr. B

The process is the same as we did with acidic solutions. *All we do is add one more step.*

You will usually be told if you need to balance in acidic or basic (also called alkaline) solution.

Full Redox Playlist

A basic solution usually has hydroxide ions (OH⁻).

Balancing Redox in Basic Medium/Solution						
Steps						
1. Balance the redox reaction as you would with an acidic solution.	In most cases you will be told whether the reaction takes place in acidic or basic					
2. Then add OH^{-} to cancel out any H^{+} ions.	medium. If not, assume acidic conditions.					
3. Combine any OH^- and H^+ to form H_2O .	Sometimes basic solution/medium is					
4. Cancel/combine any common terms (usually H ₂ O).	called alkaline solution/medium.					
Note: Some teachers add the extra step earlier in the balancing process.						
Example : Balance the equation below in basic solution.						
$Pb(OH)_4^{2-} + ClO^- \rightarrow PbO_2 + Cl^- + OH^-$	This is redox eq. we need to balance.					
1. Balance in acidic medium to get: $Pb(OH)_4^{2-} + ClO^- + 2H^+ \rightarrow PbO_2 + Cl^- + 3H_2O$	We followed the same process as before to get the balanced equation in acidic medium.					
2. Add OH ⁻ ions to cancel out the H ⁺ ions. 2OH ⁻ + Pb(OH) ₄ ²⁻ + ClO ⁻ + 2H ⁺ \rightarrow PbO ₂ + Cl ⁻ + 3H ₂ O + 2OH ⁻	There are 2H ⁺ ions in the reactants so we add 2OH ⁻ ions to each side of the equation.					
3. Combine OH^- and H^+ to form H_2O .						
$2OH^{+} + Pb(OH)_{4}^{2-} + CIO^{-} + 2H^{+} \rightarrow PbO_{2} + CI^{-} + 3H_{2}O + 2OH^{-}$ $2H_{2}O + Pb(OH)_{4}^{2-} + CIO^{-} \rightarrow PbO_{2} + CI^{-} + 3H_{2}O + 2OH^{-}$	When we have H^+ and OH^- on the same side of the equation we combine them to form H_2O .					
4. Cancel out like terms to get the final balanced equation: $Pb(OH)_4^{2-} + ClO^- \rightarrow PbO_2 + Cl^- + H_2O + 2OH^-$	There are $2H_2O$ in the reactants and $3H_2O$ in the products. We simplify this to $1H_2O$ in the products. We write this as just H_2O .					

Practice : Balance the equation below in basic solution. $H_2O_2 + Cl_2O_7 \rightarrow O_2 + ClO_2$	This is redox eq. we need to balance.		
1. Balance in acidic medium to get:	We followed the same process as before to get		
$4H_2O_2 + Cl_2O_7 \rightarrow 4O_2 + 2ClO_2 + 2H^+ + 3H_2O$	the balanced equation in acidic medium.		
2. Add OH ⁻ ions to cancel out the H ⁺ ions: 2OH ⁻ + 4H ₂ O ₂ + Cl ₂ O ₇ \rightarrow 4O ₂ + 2ClO ₂ ⁻ + 2H ⁺ + 3H ₂ O + 2OH ⁻	There are $2H^+$ ions in the reactants so we add $2OH^-$ ions to each side of the equation.		
3. Combine OH ⁻ and H ⁺ to form H ₂ O.	When we have H^+ and OH^- on the same side		
$2OH^{-} + 4H_2O_2 + Cl_2O_7 \rightarrow 4O_2 + 2ClO_2^{-} + 2H^{+} + 3H_2O + 2OH^{-}$	of the equation we combine them to form		
$2OH^{-} + 4H_2O_2 + Cl_2O_7 \rightarrow 4O_2 + 2ClO_2^{-} + 3H_2O + 2H_2O$	H_2O .		
4. Combine like terms to get the final balanced equation:	Here we have $3H_2O$ and $2H_2O$ in the products.		
$2OH^- + 4H_2O_2 + Cl_2O_7 \rightarrow 4O_2 + 2ClO_2^- + 5H_2O_2$	We add them together to get $5H_2O$.		

Practice Problems: Given the equation balanced under acidic conditions, *balance the following reactions in basic medium*.

- Unbalanced Equation: Co(OH)₃ + Sn → Co(OH)₂ + HSnO₂⁻
 Balanced Under Acidic Conditions: 2Co(OH)₃ + Sn → 2Co(OH)₂ + HSnO₂⁻ + H⁺
- 2. Unbalanced Equation: $ClO^- + Cr(OH)_4 \rightarrow CrO_4^{2-} + Cl^-$ Balanced Under Acidic Conditions: $ClO^- + Cr(OH)_4 \rightarrow CrO_4^{2-} + Cl^- + 2H^+ + H_2O^-$
- 3. Unbalanced Equation: Fe(OH)₂ + CrO₄²⁻ → Fe₂O₃ + Cr(OH)₄⁻
 Balanced Under Acidic Conditions: 6Fe(OH)₂ + 2CrO₄²⁻ + 2H⁺ → 3Fe₂O₃ + 2Cr(OH)₄⁻ + 3H₂O
- 4. Unbalanced Equation: $MnO_4^- + C_2O_4^{2^-} \rightarrow MnO_2 + CO_2$ Balanced Under Acidic Conditions: $2MnO_4^- + 3C_2O_4^{2^-} + 8H^+ \rightarrow 6CO_2 + 2MnO_2 + 4H_2O$
- 5. Unbalanced Equation: ClO₃⁻ + N₂H₄ → NO + Cl⁻
 Balanced Under Acidic Conditions: 4ClO₃⁻ + 3N₂H₄ → 6NO + 4Cl⁻ + 6H₂O

Answers:

- 1. Balanced Under Basic Conditions: $2Co(OH)_3 + Sn + OH \rightarrow 2Co(OH)_2 + HSnO_2 + H_2O$ (video solution)
- 2. Balanced Under Basic Conditions: $ClO^- + Cr(OH)_4 + 2OH^- \rightarrow CrO_4^{2-} + Cl^- + 3H_2O$
- 3. Balanced Under Basic Conditions: $6Fe(OH)_2 + 2CrO_4^{2-} \rightarrow 3Fe_2O_3 + 2Cr(OH)_4 + 2OH^2 + H_2O_4^{-}$ (video solution)
- 4. Balanced Under Basic Conditions: $2MnO_4^- + 3C_2O_4^{2-} + 4H_2O \rightarrow 6CO_2 + 2MnO_2 + 8OH^-$
- 5. Balanced Under Basic Conditions: $4\text{ClO}_3^- + 3\text{N}_2\text{H}_4 \rightarrow 6\text{NO} + 4\text{Cl}^- + 6\text{H}_2\text{O}$ (There aren't any H⁺ so you didn't need to add any OH⁻).

Redox Guides

Introduction to Redox <u>Finding Oxidation Numbers</u> <u>Writing Half Reactions</u> <u>Key Terms: Oxidized, Reduced, Oxidizing Agent, Reducing Agent</u> <u>Balancing Half Reactions</u> <u>Matching Electrons, Combining Half Reactions</u> <u>Balancing Redox in Basic Medium (this guide)</u> <u>Practice, Practice, Practice</u>

Report errors and suggestions to DrB@breslyn.org

www.Breslyn.org

B			