Redox in Basic Medium/Solution

Video Workbook with Dr. B

The process is the same as we did with acidic solutions. All we do is add one more step.

You will usually be told if you need to balance in acidic or basic (also called alkaline) solution.

- Full Redox Playlist

A basic solution usually has hydroxide ions $\left(\mathrm{OH}^{-}\right)$.

Balancing Redox in Basic Medium/Solution

Steps

1. Balance the redox reaction as you would with an acidic solution.
2. Then add OH^{-}to cancel out any H^{+}ions.
3. Combine any OH^{-}and H^{+}to form $\mathrm{H}_{2} \mathrm{O}$.
4. Cancel/combine any common terms (usually $\mathrm{H}_{2} \mathrm{O}$).

Note: Some teachers add the extra step earlier in the
balancing process.

Example: Balance the equation below in basic solution.

$$
\mathrm{Pb}(\mathrm{OH})_{4}{ }^{2-}+\mathrm{ClO}^{-} \rightarrow \mathrm{PbO}_{2}+\mathrm{Cl}^{-}+\mathrm{OH}^{-}
$$

1. Balance in acidic medium to get:

$$
\mathrm{Pb}(\mathrm{OH})_{4}{ }^{2-}+\mathrm{ClO}^{-}+2 \mathrm{H}^{+} \rightarrow \mathrm{PbO}_{2}+\mathrm{Cl}^{-}+3 \mathrm{H}_{2} \mathrm{O}
$$

2. Add OH^{-}ions to cancel out the H^{+}ions.
$2 \mathrm{OH}^{-}+\mathrm{Pb}(\mathrm{OH})_{4}{ }^{2-}+\mathrm{ClO}^{-}+2 \mathrm{H}^{+} \rightarrow \mathrm{PbO}_{2}+\mathrm{Cl}^{-}+3 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{OH}^{-}$
3. Combine OH^{-}and H^{+}to form $\mathrm{H}_{2} \mathrm{O}$.

4. Cancel out like terms to get the final balanced equation:
$\mathrm{Pb}(\mathrm{OH})_{4}{ }^{2-}+\mathrm{ClO}^{-} \rightarrow \mathrm{PbO}_{2}+\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{OH}^{-}$

In most cases you will be told whether the reaction takes place in acidic or basic medium. If not, assume acidic conditions.

Sometimes basic solution/medium is called alkaline solution/medium.

This is redox eq. we need to balance.

We followed the same process as before to get the balanced equation in acidic medium.

There are $2 \mathrm{H}^{+}$ions in the reactants so we add $2 \mathrm{OH}^{-}$ions to each side of the equation.

When we have H^{+}and OH^{-}on the same side of the equation we combine them to form $\mathrm{H}_{2} \mathrm{O}$.

There are $2 \mathrm{H}_{2} \mathrm{O}$ in the reactants and $3 \mathrm{H}_{2} \mathrm{O}$ in the products. We simplify this to $1 \mathrm{H}_{2} \mathrm{O}$ in the products. We write this as just $\mathrm{H}_{2} \mathrm{O}$.

Practice: Balance the equation below in basic solution.

$$
\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{Cl}_{2} \mathrm{O}_{7} \rightarrow \mathrm{O}_{2}+\mathrm{ClO}_{2}^{-}
$$

1. Balance in acidic medium to get:

$$
4 \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{Cl}_{2} \mathrm{O}_{7} \rightarrow 4 \mathrm{O}_{2}+2 \mathrm{ClO}_{2}^{-}+2 \mathrm{H}^{+}+3 \mathrm{H}_{2} \mathrm{O}
$$

2. Add OH^{-}ions to cancel out the H^{+}ions:
$2 \mathrm{OH}^{-}+4 \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{Cl}_{2} \mathrm{O}_{7} \rightarrow 4 \mathrm{O}_{2}+2 \mathrm{ClO}_{2}^{-}+2 \mathrm{H}^{+}+3 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{OH}^{-}$
3. Combine OH^{-}and H^{+}to form $\mathrm{H}_{2} \mathrm{O}$.
$2 \mathrm{OH}^{-}+4 \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{Cl}_{2} \mathrm{O}_{7} \rightarrow 4 \mathrm{O}_{2}+2 \mathrm{ClO}_{2}^{-}+2 \mathrm{H}^{+}+3 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{OH}^{-}$
$2 \mathrm{OH}^{-}+4 \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{Cl}_{2} \mathrm{O}_{7} \rightarrow 4 \mathrm{O}_{2}+2 \mathrm{ClO}_{2}^{-}+3 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}$
4. Combine like terms to get the final balanced equation:
$2 \mathrm{OH}^{-}+4 \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{Cl}_{2} \mathrm{O}_{7} \rightarrow 4 \mathrm{O}_{2}+2 \mathrm{ClO}_{2}^{-}+5 \mathrm{H}_{2} \mathrm{O}$

This is redox eq. we need to balance.

We followed the same process as before to get the balanced equation in acidic medium.

There are $2 \mathrm{H}^{+}$ions in the reactants so we add $2 \mathrm{OH}^{-}$ions to each side of the equation.

When we have H^{+}and OH^{-}on the same side of the equation we combine them to form $\mathrm{H}_{2} \mathrm{O}$.

Here we have $3 \mathrm{H}_{2} \mathrm{O}$ and $2 \mathrm{H}_{2} \mathrm{O}$ in the products. We add them together to get $5 \mathrm{H}_{2} \mathrm{O}$.

Practice Problems: Given the equation balanced under acidic conditions, balance the following reactions in basic medium.

1. Unbalanced Equation: $\mathrm{Co}(\mathrm{OH})_{3}+\mathrm{Sn} \rightarrow \mathrm{Co}(\mathrm{OH})_{2}+\mathrm{HSnO}_{2}{ }^{-}$

Balanced Under Acidic Conditions: $2 \mathrm{Co}(\mathrm{OH})_{3}+\mathrm{Sn} \rightarrow 2 \mathrm{Co}(\mathrm{OH})_{2}+\mathrm{HSnO}_{2}^{-}+\mathrm{H}^{+}$
2. Unbalanced Equation: $\mathrm{ClO}^{-}+\mathrm{Cr}(\mathrm{OH})_{4} \rightarrow \mathrm{CrO}_{4}{ }^{2-}+\mathrm{Cl}^{-}$

Balanced Under Acidic Conditions: $\mathrm{ClO}^{-}+\mathrm{Cr}(\mathrm{OH})_{4} \rightarrow \mathrm{CrO}_{4}{ }^{2-}+\mathrm{Cl}^{-}+2 \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{O}$
3. Unbalanced Equation: $\mathrm{Fe}(\mathrm{OH})_{2}+\mathrm{CrO}_{4}{ }^{2-} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{Cr}(\mathrm{OH})_{4}{ }^{-}$

Balanced Under Acidic Conditions: $6 \mathrm{Fe}(\mathrm{OH})_{2}+2 \mathrm{CrO}_{4}{ }^{2-}+2 \mathrm{H}^{+} \rightarrow 3 \mathrm{Fe}_{2} \mathrm{O}_{3}+2 \mathrm{Cr}(\mathrm{OH})_{4}{ }^{-}+3 \mathrm{H}_{2} \mathrm{O}$
4. Unbalanced Equation: $\mathrm{MnO}_{4}{ }^{-}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2^{-}} \rightarrow \mathrm{MnO}_{2}+\mathrm{CO}_{2}$

Balanced Under Acidic Conditions: $2 \mathrm{MnO}_{4}{ }^{-}+3 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}+8 \mathrm{H}^{+} \rightarrow 6 \mathrm{CO}_{2}+2 \mathrm{MnO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
5. Unbalanced Equation: $\mathrm{ClO}_{3}{ }^{-}+\mathrm{N}_{2} \mathrm{H}_{4} \rightarrow \mathrm{NO}+\mathrm{Cl}^{-}$

Balanced Under Acidic Conditions: $4 \mathrm{ClO}_{3}{ }^{-}+3 \mathrm{~N}_{2} \mathrm{H}_{4} \rightarrow 6 \mathrm{NO}+4 \mathrm{Cl}^{-}+6 \mathrm{H}_{2} \mathrm{O}$

Answers:

1. Balanced Under Basic Conditions: $2 \mathrm{Co}(\mathrm{OH})_{3}+\mathrm{Sn}+\mathrm{OH}^{-} \rightarrow 2 \mathrm{Co}(\mathrm{OH})_{2}+\mathrm{HSnO}_{2}^{-}+\mathrm{H}_{2} \mathrm{O}$ (video solution)
2. Balanced Under Basic Conditions: $\mathrm{ClO}^{-}+\mathrm{Cr}(\mathrm{OH})_{4}+2 \mathrm{OH}^{-} \rightarrow \mathrm{CrO}_{4}{ }^{2-}+\mathrm{Cl}^{-}+3 \mathrm{H}_{2} \mathrm{O}$
3. Balanced Under Basic Conditions: $6 \mathrm{Fe}(\mathrm{OH})_{2}+2 \mathrm{CrO}_{4}{ }^{2-} \rightarrow 3 \mathrm{Fe}_{2} \mathrm{O}_{3}+2 \mathrm{Cr}(\mathrm{OH})_{4}{ }^{-}+2 \mathrm{OH}^{-}+\mathrm{H}_{2} \mathrm{O}$ (video solution)
4. Balanced Under Basic Conditions: $2 \mathrm{MnO}_{4}{ }^{-}+3 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow 6 \mathrm{CO}_{2}+2 \mathrm{MnO}_{2}+8 \mathrm{OH}^{-}$
5. Balanced Under Basic Conditions: $4 \mathrm{ClO}_{3}{ }^{-}+3 \mathrm{~N}_{2} \mathrm{H}_{4} \rightarrow 6 \mathrm{NO}+4 \mathrm{Cl}^{-}+6 \mathrm{H}_{2} \mathrm{O}$ (There aren't any H^{+}so you didn't need to add any OH^{-}).

Redox Guides

Introduction to Redox
Finding Oxidation Numbers
Writing Half Reactions
Key Terms: Oxidized, Reduced, Oxidizing Agent, Reducing Agent
Balancing Half Reactions
Matching Electrons, Combining Half Reactions
Balancing Redox in Basic Medium (this guide)
Practice, Practice, Practice

Report errors and suggestions to $\underline{\mathrm{DrB} @ \text {,breslyn.org }}$

www.Breslyn.org

